Antimicrobial Pipeline and Drug Development

Alasdair MacGowan
Bristol Centre for Antimicrobial Research & Evaluation
North Bristol NHS Trust & University of Bristol
BRISTOL UK

Topics:

- Background

- The present situation

- Drugs recently approved and in late development

- Future issues

- Conclusions

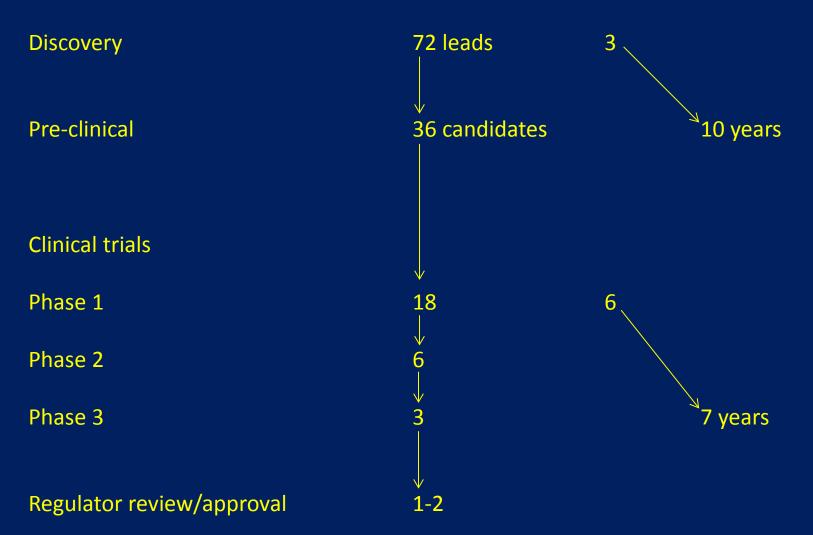
Background:

Not enough new antibacterials or companies active in the therapeutic area

FDA Approvals of new antibacterials 1983-2015 (Boucher et al, 2013, updated FDA website)

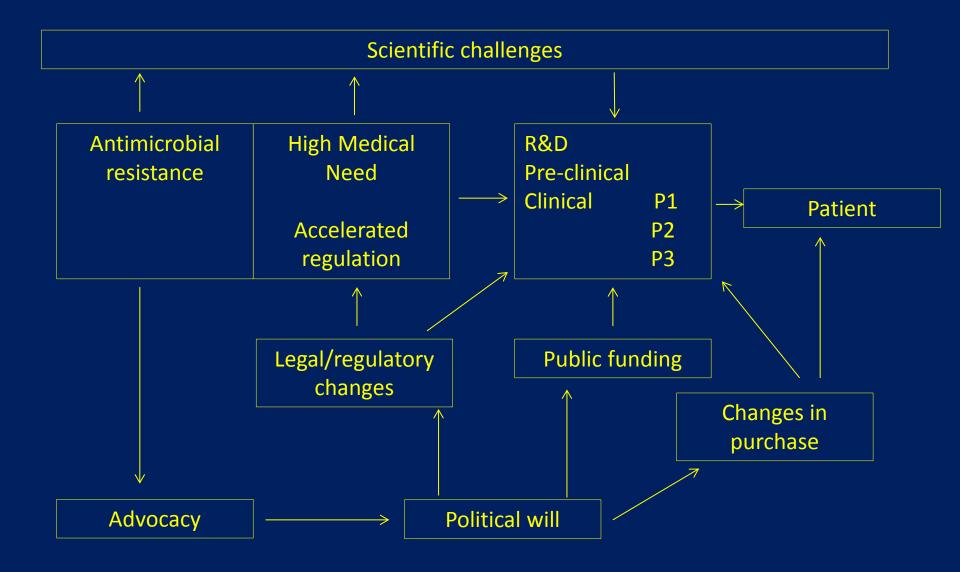
Years	Antibacterial approved
1983-1987	16
1988-1992	14
1993-1997	10
1998-2002	6
2003-2007	5
2008-2012	2
2013-2015	6

(ceftazidime+avibactam; dalbavancin; oritavancin; tedizolid; telavancin; Ceftolozane+tazobactam)


Active corporate antibacterial programmes: 1940 - onwards (Kinch et al, 2014)

Year	Active programme
1940	1
1950	4
1960	9
1970	22
1980	26
1990	29
2000	31
2010	12
2013	9

Why are there so few drugs and companies?


- Few novel modes of action
- Increasing regulatory demands (manufacture, safety, efficacy)
- Trial designs (superiority vs non-inferiority)
- Infection control interventions
- ➤ Highly saturated market
- High generic competition
- Conservative prescribers
- Short course therapy
- Cost containment
- Antimicrobial resistance
- Means less attractive commercially than other therapeutic areas

Drug development takes a long time (Paul et al, 2010; Rex, 2015)

Start now and you may have approval by 2025-2030

Determinants impacting on research and development (Harbarth et al, 2015)

Actual and Proposed Changes in regulatory system

Accelerated approval

FDA QIDP (Qualified Infectious Disease Product) designation – limited approval after Phase 2 studies (ceftazidime-avibactam, AZ)

Changes to Phase 3 development

Tier A Disease focus, two RCTs P3 for each indication, large number of patients; few resistant pathogens

Tier B Single disease focused RCT P3 per indication supported by smaller pathogen/resistance specific studies, may be prospective comparative, open label data sets ± historic data, PK-PD studies

Tier C Smaller syndrome or pathogen specific trials as Tier B. No large RCTs

Tier D Animal Rule Studies – no clinical data, i.e. Anthrax

Safety only Studies

Large non-comparative studies safety data only collected historically used in Phase 4 development

Drugs in Development (1)

Major antibacterial drug research and development programmes and phase of development – 2015

	Phase 1	Phase 2	Phase 3	All
Old mode of	2	4	3	9
action; G+				
N	•	2		_
Novel; G+	2	3	-	5
Old; G-	2	4	3	9
Old, G	4	7	5	J
Novel G-	1 (Pseudom	nonas only)		1
	•	,,		
			-	

Drugs in Development (2)

Ceftazidime+avibactam (AZ) under review
Ceftolozane+tazobactam (Merck) approved 2015
Ceftobiprole (Basilea) approved 2013
Oritavancin (T Medicines Co) approved 2015
Tedizolid (Merck) approved 2015
Dalbavancin (Allegan) approved 2015

Phase 3

Meropenem+RPX7009 (The Medicines Co)

Eravacycline (Tetraphase)

Plazomicin (Achaogen)

Delafloxacin (Melinta)

Solithromyciin (Cempra)

Omadacycline (Paratek)

Lefamulin (BC-3781) (Nabriva)

Bay 41-6551-inhal amikacin (Bayer)

Phase 2

Nemonoxacin; radezolid; avarofloxacin; brilacidin, AFN 1252, POL 7080; aztreonamavibactam; imipenem+MK-7655, Debio 1450/2, EXT 0914; S 649266, CG 400549; finafloxacin; zabofloxacin

Future issues:

- 1) Antimicrobial resistance emergence- uncertainty
- 2) Value of antibacterials companies patients and society sales and revenue
- 3) Cost of development financial models and net present value

1) Antibiotic Resistance

- Improved dosing and use of combinations
- Rigorous infection control vs
- Resistance as emerged to all drugs
- Use leads to resistance
- Rapid outbreaks are always possible
- --> uncertainty remains, difficult to cost

2) Two types of antibiotic value

- Present use them to treat infection now (this model drives company revenues)
- Future the agent is available to use in the future

3) Cost of development

Simple approach

Years 1-13 development costs - €600m Years 13-33 on market sales - €2,500m

Net present value (NPV)

- Cash today is worth more than the promise of cash tomorrow
- Based on cost of capital, risk etc, typical discount is 10% pa, hence €100 in ten years time is worth €39 today

and NPV > 0 means some value demonstrated

applied above from year 0 the NPV is - €50m for antibacterials

US/EU economic modelling

For:-

- ABOM, ABSSI, CAP, cIAI, cUTI, HAP-VAP NPV always <USD 40m

However:-

- For patient population value much higher – USD 12B

Sertkaya et al

Cost of Development: Mitigation

Public - Private Partnerships (1)

USA:

NIAID: Antibacterial Resistance Programme

- Extensive assay pre-clinical services
- Phase 1 units
- Antibacterial Resistance Leadership Group
- Master protocols

BARDA: (Biomedical Advanced Research & Development Authority)

 Several public-private partnerships, i.e. eravacycline (Tetraphase); Plazomicin (Achaeogen); Aztreonam-avibactam (AZ)

Cost of Development: Mitigation

Public – Private Partnerships (2)

EU - Innovative Medicines Initiative (IMI) ND4BB Programme (New drugs for Bag Bugs)

Topic 1: COMBACTE-NET

- > Clinical & Laboratory network and infrastructure
- > Analytical network
- > Clinical development of GSK 1322323

Topic 2 TRANSLOCATION

Basic Sciences Research on Gram-negatives – efflux and cell wall penetration

Topic 3 ENABLE

Discovery and Development of New Drugs combatting Gram-negative infection. Target to candidate research including Phase 1

Topic 4 DRIVE-AB

Driving re-investment in R&D and responsible use of antibiotics

Topic 5 COMBACTE-CARE

Clinical development of antibacterial agents for Gram-negative antibiotic resistant pathogens aztreonam+avibactam

Topic 6 COMBACTE-MAGNET

Systemic molecules against HCAI due to clinically challenging Gram-negative pathogens – Phase 1/2 AIC499

The ND4BB Programme

ND4BB cross topic collaboration and dissemination

Topic 1: COMBACTE

a) Enabling
Clinical
Collaboration
and Refining
Clinical Trial
Design
b) Clinical
Development of

Topic 1c: Clinical Development of MEDI4893

Topic 2: TRANSLOCA-

penetration and
efflux Gramnegatives Data
Hub and
Learning from

Topic 3: ENABLE

Discovery & development of new drugs combatting Gram-negative infections

Topic 4: DRIVE AB

Driving reinvestment in R&D and Responsible use of antibiotics

Topic 5: COMBACTE CARE

Clinical
Development of
antibacterial
agents for
Gram-negative
antibiotic
resistant
pathogens

Topic 6: COMBACTE-MAGNET

Systemic molecules against HAIs due to clinically challenging Gram-negative pathogens **Topic 7:** Inhaled Antibacterials in CF and non-CF

Dvpt-focused

(Gram +

infections)

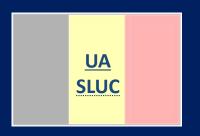
Discovery-focused

Economics & stewardship

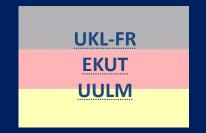
Development-focused (Gram-negative infections)

ND4BB Information Center

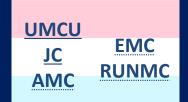
All data generated is submitted and is accessible to all consortium partners

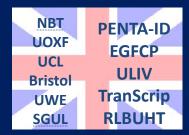

Example: COMBACTE-MAGNET

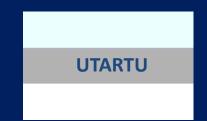
- To prevent infections caused by *Pseudomonas aeruginosa* in critically ill patients
 - Clinical development of MEDI3902, a bivalent bispecific IgG1 mAb targeting the pathogenic components PsI and PcrV
- To treat infections caused by MDR Enterobacteriacae, Pseudomonas aeruginosa and Acinetobacter species
 - Clinical development of AIC499, a new beta-lactam alone or in combination with a beta-lactamase inhibitor
- To establish an epidemiologic network able to map and organize available surveillance systems in Europe (« EPI-Net »)

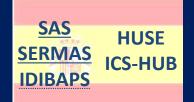

The COMBACTE-MAGNET Consortium

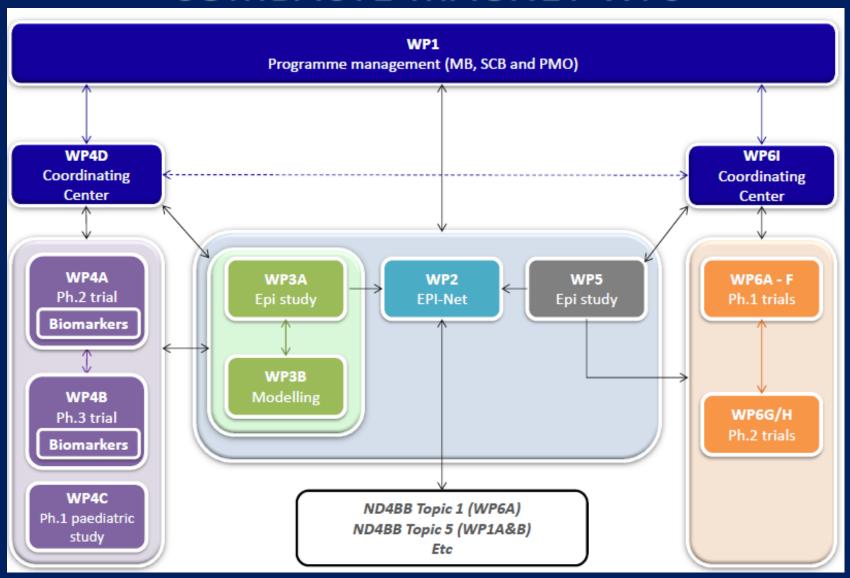
41 partners (5 pharma and 36 public partners)











Relationship between COMBACTE-MAGNET WPs

Staff Efforts

Participant No. / Short name	Total person months	
Part.1/AZ/MI	2724.99	
Part.2/UMCU	400.04	
Part.3/UA	412.42	
Part.4/UNIGE	100.58	
Part.5/Julius Clinical	0	
Part.6/ECRIN-ERIC	0	
Part.7/EKUT	527	
Part.8/RUNMC	104	
Part.9/SAS	153	
Part.10/UKL-FR	97.81	
Part.11/UOXF	12	
Part.12/UULM	38	
Part.13/UZH	38	
Part.14/ICAN	57.60	
Part.15/IDIBAPS	72	
Part.16/CHUV	20.88	
Part.17/SERMAS	57.60	
Part.18/UCL	66.60	
Part.19/PENTA ID	20.92	
Part.19a/SGUL	70.11	
Part.19b/Utartu	28.8	
Part.20/EGFCP	13.33	

Participant No. / Short name	Total person months
Part.21/AMC	24
Part.22/HUSE	36
Part.23/CHUL	67.20
Part.24/INSERM	122
Part.25/AiCuris	600.35
Part.26/NBT	728.27
Part.27/TAU	38.00
Part.28/EMC	29.00
Part.29/ULIV	30.00
Part.30/TranScrip	0.80
Part.31/Bristol	195.62
Part.32/CEFAIA	30.04
Part.33/ICS-HUB	14.00
Part.34/MUW	54.00
Part.35/GSK	8.40
Part.36/ Basilea	8.40
Part.37/ Sanofi	8.40
Part.38/APHP	28.00
Part.39/RLBUHT	20.00
Part.40/UWE	39.00
Part.41/SLUC	49.60

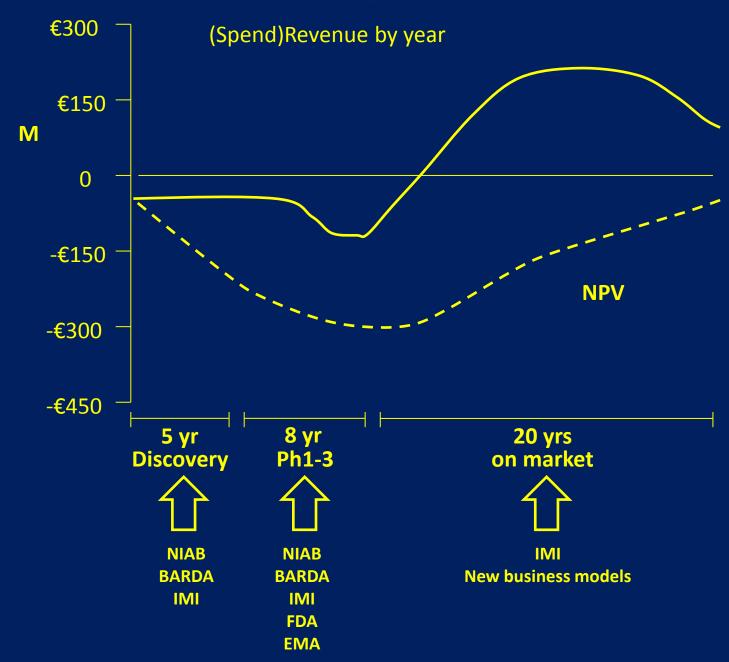
Phase 1 – Work Packages

- WP6A: Single and Multiple dose trial of AIC499 in healthy volunteers (Part A) and afterwards generation of early safety and microbiological efficacy data of AIC499/BLI from patients with cUTI without pyelonephritis (Part B)
- WP6B: Drug-drug interaction trial between AIC499 and BLI to investigate their mutual influence on pharmacokinetics and safety
- WP6C: Pharmacokinetics and mass balance study of AIC499, and identification of its metabolites in humans
- WP6D: TQT prolongation study to obtain guidance for cardiac safety monitoring in studies with larger populations
- WP6E: Drug-drug interactions between AIC499/BLI and usual concomitant medication in the intended indications
- WP6F: Effect of different degrees of renal impairment in patients on the pharmacokinetics of AIC499

Phase 2 – Work Packages

- WP6G: PoC trial in hospitalised patients with cUTI due to Gram-negative pathogens
- WP6H: PoC trial in hospitalised patients with cIAI due to Gram-negative pathogens
 - To investigate the safety, tolerability, efficacy and pharmacokinetics/ pharmacodynamics of AIC499/BLI in patients with cUTI or cIAI
 - To assess the efficacy of AIC499/BLI in cases caused by multi-drug resistant
 Gram-negative pathogens
- **WP6I**: Clinical workstream (WP6A-H) coordination cente
 - To provide program management and project coordination, and to ensure strategic alignment within WP1, and with other programs within ND4BBs

Possible future economic ideas


(Push) Refundable tax credits

- For some percentage (i.e. 25%) of qualifying expenses, company either receives a tax credit or payment.
- Immediate impact on NPV, i.e. €150m returned to company of development costs of €600m

Pull (Insurance – based approaches)

- National acquisition at a fixed predictable rate, i.e. UK by £10m/year new antibiotic for 10 years
- Fee guarantees availability of drug whether used or not.

Economic impacts

Conclusions:

- Antibacterial drug development is changing and will change more
- Massive public sector investment is going into this area in both the US (BARDA) and EU (IMI)
- Regulatory change is helping drug development
- The number of new agents entering development is increasing but few novel modes of action
- Breaking out of the sales drives profits model is essential for future development
- Antibiotic Stewardship in the NHS is not yet responsive to new agents
- Unclear how sustainable development will be achieved